Weighted Procrustes Analysis for Diffusion Tensor Imaging
نویسندگان
چکیده
There has been substantial interest in the development of methods for processing diffusion tensor fields, taking into account the non-Euclidean nature of the tensor space. In this paper, we generalise Procrustes analysis to weighted Procrustes analysis for diffusion tensor smoothing, interpolation, regularisation and segmentation in which an arbitrary number of tensors can be processed efficiently with the additional flexibility of controlling their individual contributions. An algorithm has been developed for calculating the weighted Procrustes mean tensor. A weighted regularisation model with Procrustes size-and shape metric is proposed which incorporates the smoothness of the neighbourhood and the regularisation with the diffusion behaviour of interest. Our methods and a study of Procrustes anisotropy measure are illustrated on both synthetic and real diffusion tensor data.
منابع مشابه
Procrustes Analysis of Diffusion Tensor Data
Introduction: Diffusion tensor imaging (DTI) is becoming increasingly important in clinical studies of diseases such as multiple sclerosis and schizophrenia, and also in investigating brain connectivity. Hence, there is a growing need to process diffusion tensor (DT) images within a statistical framework based on appropriate mathematical metrics. However, the usual Euclidean operations are ofte...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملNon-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging
The statistical analysis of covariance matrix data is considered, and in particular methodology is discussed which takes into account the non-Euclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix, and in particular ...
متن کاملNon-euclidean Statistics for Covariance Matrices, with Applications to Diffusion Tensor Imaging1 by Ian
The statistical analysis of covariance matrix data is considered and, in particular, methodology is discussed which takes into account the nonEuclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix and, in particular,...
متن کاملRegularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics
Practical statistical analysis of diffusion tensor images is considered, and we focus primarily on methods that use metrics based on Euclidean distances between powers of diffusion tensors. First we describe a family of anisotropy measures based on a scale invariant power-Euclidean metric, which are useful for visualisation. Some properties of the measures are derived and practical consideratio...
متن کامل